Proporción Aurea

La proporción áurea. Conocida también como: El número áureo, número de oro, razón extrema y media, razón áurea, razón dorada, media áurea. es un número irracional, representado por la letra griega φ (phi) (en minúscula) o Φ (Phi) (en mayúscula) en honor al escultor griego Fidias. Se trata de un número algebraico irracional (su representación decimal no tiene período) que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como una expresión aritmética, sino como relación o proporción entre dos segmentos de una recta, o sea, una construcción geométrica. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza: en las nervaduras de las hojas de algunos árboles, en el grosor de las ramas, en el caparazón de un caracol, en los flósculos de los girasoles, etc. Una de sus propiedades aritméticas más curiosas es que su cuadrado (Φ2 = 2,61803398874989…) y su inverso (1/Φ = 0,61803398874989…) tienen las mismas infinitas cifras decimales.

Algunos autores sugieren que el número áureo se encuentra como proporción en varias estelas de Babilonia y Asiria de alrededor de 2000 a. e. c.. Sin embargo, no existe documentación histórica que indique que el número áureo fuera utilizado conscientemente por dichos artistas en la elaboración de las estelas. Cuando se mide una estructura compleja, es fácil obtener resultados curiosos si se tienen muchas medidas disponibles. Además, para que se pueda afirmar que el número áureo está presente, las medidas deben tomarse desde puntos significativos del objeto, pero este no es el caso de muchas hipótesis que defienden la presencia del número áureo. Por todas estas razones Mario Livio concluye que es muy improbable que los babilonios hayan descubierto el número áureo.

El primero en hacer un estudio formal del número áureo fue Euclides (c. 300-265 a. C.), quien lo definió de la siguiente manera:

“Se dice que una recta ha sido cortada en extrema y media razón cuando la recta entera es al segmento mayor como el segmento mayor es al segmento menor”.

Euclides Los Elementos Definición 3 del Libro Sexto.

Euclides demostró también que este número no puede ser descrito como la razón de dos números enteros; es decir, es un número irracional.

Platón (c. 428-347 a. C.) vivió antes de que Euclides estudiara el número áureo. Sin embargo, a veces se le atribuye el desarrollo de teoremas relacionados con el número áureo debido a que el historiador griego Proclo escribió:

“Eudoxo… multiplicó el número de teoremas relativos a la sección a los que Platón dio origen”.
Proclo en Un comentario sobre el Primer Libro de los Elementos de Euclides.

Aquí a menudo se interpretó la palabra sección (τομή) como la sección áurea. Sin embargo a partir del siglo XIX esta interpretación ha sido motivo de gran controversia y muchos investigadores han llegado a la conclusión de que la palabra sección no tuvo nada que ver con el número áureo. No obstante, Platón consideró que los números irracionales, descubiertos por los pitagóricos, eran de particular importancia y la llave de la física del cosmos. Esta opinión tuvo una gran influencia en muchos filósofos y matemáticos posteriores, en particular los neoplatónicos.

A pesar de lo discutible de su conocimiento sobre el número áureo, Platón se ocupó de estudiar el origen y la estructura del cosmos, cosa que intentó usando los cinco sólidos platónicos, construidos y estudiados por Teeteto. En particular, combinó la idea de Empédocles sobre la existencia de cuatro elementos básicos de la materia, con la teoría atómica de Demócrito. Para Platón, cada uno de los sólidos correspondía a una de las partículas que conformaban cada uno de los elementos: la tierra estaba asociada al cubo, el fuego al tetraedro, el aire al octaedro, el agua al icosaedro, y finalmente el Universo como un todo, estaba asociado con el dodecaedro.

Ver más en: “Golden Ratio”

Tomado de: Logos: Cognición y Lenguaje

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

10 + Trece =